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Abstract: This paper is concerned with analysis
problem for the global exponential stability of
recurrent neural networks (RNNs) with mixed
discrete and distributed delays, unlike other papers,
the nodes are associated with the topology of network.
By using Lyapunov-Krasovskii functional and Young
inequality, we give the sufficient condition of global
exponential stability of the new cellular neural
network, in addition, the example is provided to
illustrate the applicability of the result.
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1. Introduction

In 1992, Chua and Roska introduced a delay
cellular neural network (CNN). Delay cellular neural
network has been applied in many fields nowadays,
such as moving target detection, identification and
classification, further, along with the rapid
development of biological information in cell
simulation; image analysis has been widely used in
recent years. We must first concern the stability of
system, because the main function of CNN is about
to change an input image into a corresponding output
image. The various generalizations of neural
networks have attracted attention of the scientific
community due to their promising potentiality for
tasks of classification, associative memory, parallel
computation and the ability to difficult optimization
[1-5]. Such applications rely on the existence of
equilibrium points and the qualitative properties of
neural networks. The time delay is commonly existed
in various engineering systems such as chemical
processes, hydraulic and rolling mill systems, etc.
These effects are unavoidably existed in the
implementation of neural networks, and may cause
undesirable dynamic network behaviors such as
oscillation and instability. Therefore, it is important

to investigate the stability of delayed neural networks.

The stability analysis of neural networks plays an

important role in the designs and applications. A
large number of the criteria on the stability of neural
networks have been derived in the literature.

The global asymptotic stability results of different
classes of delayed neural networks were proposed in
[6-10, 22]. However, these results are only concerned
with the asymptotic stability of networks without
providing any conditions for exponential stability and
any information about the decay rates of the delayed
neural networks. Therefore, it is particularly
important, when the exponential convergence rate is
used to determine the speed of neural computations.
Thus, it is important both theoretically and practically
to determine the exponential stability and to estimate
the exponential convergence rate for delayed neural
networks. Considering this, the corresponding
research results of many researchers have been
reported in the literatures [11-15]. Neural network
usually has a spatial nature due to the presence of
various parallel pathways with a variety of axon sizes
and lengths, so it is desirable to model them by
introducing unbounded delays. Thus, there will be a
distribution of conduction velocities along these
pathways and a distribution of propagation delays. In
these circumstances the signal propagation is not
instantaneous and cannot be modeled with discrete
delays and a more appropriate way is to incorporate
continuously distributed delays in neural network
models. In recent years there has been a growing
research interest in study of neural networks with
distributed delays. In fact, both discrete and
distributed delays should be taken into account when
modeling a realistic neural network [16-20].

Based on the above discussions, we consider a
new mixed discrete and distributed delays cellular
neural network described by a neutral integro-
differential equation. The main purpose of this paper
is to study the global exponential stability for neutral-
type delayed neural networks. The structure of the
neutral-type neural networks with distributed delays
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under consideration is more general than the other
papers existed in the literature. To the best of the
author’s knowledge, there were no global stability
results for neutral-type neural networks. This paper is
an attempt to this goal. By utilizing the Lyapunov-
Krasovskii functional and Young inequality, we give
the sufficient condition of global exponential stability
of mixed discrete and distributed delays cellular
neural network, In addition, the example is provided

The paper is organized as follows: In Section 2,
Problem formulation Model is stated and some
definitions and lemmas are listed. Based on the
Lyapunov stability theory and Young inequality,
Main results and proofs about global exponential
stability of multi-delay and distributed delay cellular
neural network are listed in Section 3. In section 4,
we give an example. We give the conclusion of this
paper in Section 5.

to illustrate the applicability of the result.
2. Problem formulation Model

Consider the following multi-delay and distributed delay cellular neural network model:
Xi (t) = _diXi (t) + zaij fj (Xj (t)) +Zbij g j (Xj (t - Tij (t)))
i=1 j=1
+Zcur K;t=s)h,(x;(s))ds+l;, i=12,...,r 1)
= T
% (1) =k (X () + D c;x; (1), i=r+Lr+2,..n,

j=r+1

X,(0) = ,(0), p=max(z, (1)), - p<O<0

where ¢,(0) is bounded and continuous in the sub [0, +), n is the number of the neurons in the neural network, ,
the constants a;;, bjj and c;; denote, respectively, the connection weights, the discretely delayed connection weights
and the distributively delayed connection weighted, of the jth neuron on the | neuron.

X (t) = (%, (1), %, (t),..., X, (t))" denotes the state of the ith neural neuron at time t, fi(x;(t)), g;(x(t)) and h;(x;(t)) are

the activation functions of the jth neuron attime t, |, is the external bias on the ith neuron, d, denotes the rate with

which the ith neuron will reset its potential to the resting state in isolation when disconnected from the network and
external inputs. z; > 0 is a bounded time-varying Delay, Kerner coefficient K;;:[0,00)—[0,00) is continuous in the

sub [0,:0) and satisfies IO Kij (s)ds=1 i,j=12,...,n. k(-)eC[R", R] and k(0)=0, C=(C;)  nyxcn are real
matrixes, which denote the strength of neuron interconnections.

In this paper, we make the following assumptions and definitions for the neuron activation functions.
Definition.1 X (i =1,2,...,n) is the equilibrium point of (1) associated with a given |, (i=1,2,...,n) is said to be

globally exponentially stable, if there are positive constants k > Oand g > 0 such that every solution Xi* (i=1,2,...
n) of (1) satisfies as follows

% (0) - x| < ue™ sup |4(6)-x], vt>0.
—p<0<0

Definition.2 V ¢(0) €C ([—p, 0], R") , we definite
|#| = max {||¢(¢9)|| 10 €[-p,0]}, then we can get as follows

n

o-x1 = sup Yla@)-x[ r>1
1

—0<0<0 i=

Assumption.1 (A1) For i =1,2,...,n , the neuron activation functions in (1) satisfy

|fi(s)— fi(s)| <aj[s,—=s,|, Vs, =5,
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‘gj(sl)_gj(sz)‘ Sﬂr |51_32|’ vS’l #S,
‘hj (51)_hj (Sz)‘ < 7/; |51 _Sz|1 Vs, #5,

where aj*, ﬂj*, 7/1.* are constants.

Assumption.2 (A2)
The neuron activation functions fj(x;(t)), g;(x;(t)), hj(xj(t)) j =1,2,...,n are bounded.

Remark.1 The constants «;, B, 7| in Assumption 1 are allowed to be positive or zero. Thus, the
resulting activation functions could be non-monotonic, and more general than the usual sigmoid functions.
Lemma.l [21] (Rogers-Holder Inequality)

If p>1,1+£:1,andak >0,b, >0(k=12,...,n) , Then
P q

n n l n i
2 ab <X al)" (Q_b)"
k=1 k=1 k=1

N 1 1
Lemma.2 [22] (Young Inequality) ife>0,h>0, P > 1, E+_ =1, then we can get as follows
q
P
eh slep +1hq :iep +p—_1h‘”l
p q p p
3. Main results and proofs

Theorm.1 fj, g; hj are Lipschitz continuous and 7 (t) <0, if there are constants
‘g’a)nqij’nij’hij’ jij’Iij’ pij’qji’nji’hji’ jji’lji’ Pji 1y € R(i =1!21""n)’Uij =U; = X = X =1
(i,j=r+1..,n),® >0,@, >0,9>1(when 9=1 =1, we must let

g; = =hij = jij =Iij =0 =Q; =Ny =hji = jji =Iji =P =1(3,j=12,..,1),

v =v; =13 =x; =1, j=r+1..,n)

r Il B o n r ol IR ]
~ 94, +(9_1)zwi |aij| 91 a;r 91 +Zwi |aij| i a; i +(3—1)Z(0i |bij| 9-1 ﬂj* 91
j=1 j=1 j=1
\ % + % - | P N by | el | N i | w|Pi | pe|? :
+3-DY o lc;| 7 [ + X ale| 7] + X | |8 + X alel ] 8] <0 (=1...7)
= i1 i1 i

n 9-v; n % ,
@; Yy [(-Dlk| 71 + [k [T <0, @ (n—1) Y [(F-De;| ** +[e;|"1+e(n-1) <0 (i=r+1,...n)
j=r+l j=r+l
Then, the equilibrium point of multi-delay and distributed delay cellular neural network x* is global
exponential stability.

Proof. We shift the equilibrium point X = (X, X,,...,X.)" of (1) to the equation

u(t) =x(t) —x" =[w ), u,).....u,OT

Thus we can get as follows
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(0 =~ 0+ X2, £, )+ 5,87, (-7, 0)

+icujt K, (t=$)h°(u,(s)ds, i=12,..,r @)
R

u. (t) =k (T, (t)) + Zn: c;u;(t), i=r+Lr+2...n,

where o

f7(u; ) = f;(u; () +x7) = f,(x)),
g5 (u; () =g, (u; ) +x))—g,(x)),
hy (u; (1) = h; (u; () + X)) =h; (X)),

o (t) = (u (1), u,(t),...,u ()"

3)

Consider multi-delay and distributed delay cellular neural networks associated with the problem of
nonlinear equations

dx = a fJ.(xi*)+2bijgj(xi*)+ZcijJ.t K;t—s)h,(x)ds+l;,,i=12,....r,
=1 = i T

dx; =k (X (1) + D cX;(t), i=r+Lr+2,...n,
j=r+l

We design the following Lyapunov functional as follows

V(U, t) _ Zr:a), {|Ul(t)|g gt +i‘bij‘hij ﬁ}. i J':irn Uj(S)‘g e6(5+fij (t))ds+ i @, i |ui(t)|'9 et
i-1 j=L ! '

i=r+1 j=r+1
\ b 9 [t d . L i1 Pt
+Z‘cij" B J.O‘uj(s—rij)‘ esds}+2‘cij“ 7] ‘J.H“
j=1 j=1 ii
By (2), we calculate the Dini upper right derivative of the solution V(u, t),
D'V (u,t)

= Zw {e[e]u, ) + 9Ju, O] sign(u, ©) 4, ©)]

B r
h.
&t ij
+e Z‘bij‘
L i<t

Pij

gj(uj (5))“9 ef(éf”ij (t))dé:

Vi

,Br ﬂr ’ ‘Uj(t_fij)‘g (l_zl-ij (t))}

jij t g g-rij(t) . b hij
u; @) e _Z;‘ i
J:

i

j

cet | e[ o, @) € =S, 7] o,y -2 )] (2-2, (t))}
L =L j=1
+|Pi | o] egt uj (t _Tij)‘g 4 ii‘uj (_Tij)‘g Z:ij (t)}

r
I
+Z‘Cij‘
-1

Y a, { 3 lu @] sign@ )0+ 3 '“i(t)f}

i=r+l j=r+1 j=r+1

i=1 j=1
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By 7;(t) <0, therefore we can get as follows
DV (u,t)

r

<Y @ [e]u @) +Ju,®)] smMua»uaﬂ+e{

i=1

(1)
ij e k

r r r
Pij I e (t) I Pij 3 I
+ ij eri () i | +|Mi _ ‘ i | +|Pi
7 i\j e Z‘Cij ' i\j )N
i1 i1

=

1j ij

o

"e uj(t—rij)‘g}

e Zw {;ﬂu o sign(ui(t»(ki @ )+ j%ci,-u,-(t)jwj_iﬁju&t)ﬁ}
Sgwi{eg‘[g|ui | +9|u (t| sign(u, (t))( +Zauf1 (u )+Zr1bijg?(uj(t—rij(t)))
JZ Ky t=9)h; (U, (s as)]+e” { u,.(t—zi,.)f}
e zu : }z\c“\" Pl e |

+@iw{2ﬂma| HSZMW@|@@&£2M@@

i=r+l j=r+l j=r+l j=r+l

+|Ji
eJ

ij ij

+|Pij Pij

JASERST

By
n n 9-
3 Z ‘Cin“i (t)|9’1‘uj (t)‘ <4 Z [‘Cij‘ : i

Zij

ij

(4)
<9 Z {_[‘Cu‘ - l |U (t)| ] 9 9 ! +— [‘Cu o
j=r+l
and
93 el @ <93 e[+ 01 *
j=r+1 j=r+1 i (5)
jreisl

<92{—[|k|“ b0

j=r+l

Then, by (4) and (5), we can obtain
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D(u,t)

< eftiwi {(g—l9o|i)|ui @[+ gi\aij

.
a;

ju, @ Ju j(t)\+3i\bij

By

Ju O Juj (€= 7 )

uj(t _Tij)“g}}

j|j ji]

Ju, O Ju; ©)

¥i

By

+ 9;\% [, (s)ds} + {;‘bﬁ k B;

+e! Zn: @, {‘9 Zn: {87?1 [k |‘%1] Ju (O] '1+ %ﬂki [ Ju, (t)r]}(Ur )

i=r+l j=r+1

t 9 ey (1) : b hyj
ut) e ‘Z;‘ i
J:

j=r+1

L 9(n-r) Z {9771[\(;” \Tll U (t)|9]+%[\cij‘zﬁ u jmﬁ}”i |ui(t)|9}

.
a;

< eft_zrja;i {(,s—l9o|i)|ui @[+ gi\aij

Ju, @) Ju J.(t)\wi“\bij

By

o, @) u; =2, 0)

u; (t — T )rﬂ}
(6)

Ji i

Yi

By

By

)
+ l92|cij
=1
n
+e? Z of {

I, (t)|971 |uj (t)q + {Zr”bij |h., U, (t)|9 e ®) _Zr:|bij |h.1
=t j=1

> {@-Dlk[ 1 o 1+ 0k [ Ju, O THT, ©)

i=r+l1 j=r+1

j=r+1

+4n—r)§j«9—nﬂ%|¥?wmofyﬂkﬂ“hﬁaﬂﬁ}+e§iwxof}

We are divided into two kinds of discussion
1. when 9>1, by Young inequality
‘QZ‘aij U, (t)|9_1 ‘Uj (t)‘
j=1
= ‘92[“%“
j=1
< 192[‘aij‘
j=1
<(3-DY [l
j=1
BZ‘CU
j=1
r 9
- ‘92 [‘Cij ‘ 91
j=1

r o
<9 [le; |
-1

N
&,

9-0;
T o
9-1

u,®| 1°

e -
2 u, @)1 [ay|”

.
&,

.
&,

9-0;
=1 K

u,®'71°

sy e
| 0T [ay|”

.
«;

.
x;

oo, (7)
=y +|

j

.
&,

u,®[]

a

7w (0 1+ Y llay
j=1

7i

Ju, @) u; )]

Yi 7]

1
TGINE

90y PR
o |ui(t)| 17 [‘Cij‘]

(8)

ﬂ 9 91 li pii 9 1
O ] 7] o, @ 77

Vi

By

"oy -7 )] ]

By

<@-DY 07 5] Ju 0 1+ X1, "
j=t j=1
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83 [e, |l Jlu. o o, 0|
j=1
oy
- 92 [‘Cij‘ 91
j=1
J 9-1; 9

< '92[‘%‘ ‘T&J 7;
j=1
i r 9l 9Py s r "
<@-DX M [ ] Ju @ T+ X ley |
j=t j=1

By (6) (7) (8) and (9), we can get as follows
D'V (u,t)

kL) 9 k- ki Pij 5.2
POty |77 s O] 7

Y

9)

Py 9 - ki Pij 3 :
SO 1| ] Jus @] 12

7 7 )1

9-0;
= +[M

i

.
a;

u )|

a

< est;wi {(g_gdi)|ui(t)|9 +(19_1);‘aij‘ 9-1 |Ui(t)|‘9 +;‘aij‘qu

Bi

", -7, )

By

r -y 9k 9 < ho
+(9—1)2\bij\ S|B9 |u, @) +Z\bij\ '
i=1 j=1

vty { S L@k 72 |u O 1+ 1k [

i=r+l1 j=r+l

u, ] 1T, (1)

ki

j=r+

+Hn-1) Y {(9-Dic, [ O T+ e Ju, @ T+ Y (t)|‘9}

j=r+

Se‘“Zwi{(5—19di)+(19—1)2‘aij‘9—1 |+ +Z\a".\““ al” +(9—1)Z\bij\9—l Bl
i—1 =L -1 -1
- % + % - il PN B | o i L gp . i s|Pi | pr|? oo
+(9—1)Z‘Ci,-‘ SR +Z‘Cij‘ 7 +Z‘bij‘ pile +Z‘Cij‘ vl |B| e
=1 = i =

+|Pi

7j

i
I
+Z|Ci,- |
=1

By

9 9 “ n n ﬂ ;i _st T
u. (t)|” +e o, G-k |91 +|k|" e ™™@Q1,...,1
}| of w3 .{j;lu TERTE

+(n—r) Z [(9-D)|c; |ﬁ +le/* 1+ 2(n- r)}|ui @[ <0

where &, 11 are certain constants.

2, when 9 =1, we must let

O =1y =y = Iy =l =Py =0 =ny =h; = J; =l = p; =1G, 1 =12,...7),
U =05 = X = X =1(i, j=r+1...,n)

By (6)
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DV (u,1)

<e’> o |:(8 - 9d,
i=1

ij ij ij ij

Foo

+eﬂzw{2|k|"ﬂl -‘%t(ll )" +(n— r)Z\c”\"”+g(n—r)}|u (1) <0

i=r+1 j=r+1 j=r+1

where &, w4 are certain constants, thus, we can learn that when 9 =1, the conclusions are valid.
4. An example

Consider the following cellular neural network model

%_ 5x1(t)+2a1J f,(x; (1)) +Zb1 g, (x;(t—7;(1)))+0. 1j e " tanh(x,(s))ds
—O.3I 2e " tanh(x, (s))ds +2
dxdt(t) =—4x (t)JrZa21 f,(x; (1)) +Zb21g (x; (t—7; (1)) —0. 1J 2e " tanh(x,(s))ds

+ O.5J‘7 e " tanh(x,(s))ds +3

dx, (t)

pm =K, (X, (1)) + CyX%5 (1)

where K = {k } .[ e"K, ; (D)dt =k; <00, c =1 Kk;(X,(t)) = X, (t), 4 is exponential convergence
rate estimate.

[1.001 08017 _ [-2301 1.720
10 —1201 |1102 O

Activation function as follows

1 1 + +
fj(Xj(t)):gj(Xj(t)):E(|X+1|_|X_1|),(J: , =|B|= =1
If we let

:qij:nij:hij:jijzlij:pu g; =n 'i:hji:jjizlji:pji:_wi

=ILL.|.=UIJ =UJI =l” :le =1,g=0’19=2
We can easily obtain

—w,9d; +iw.

+Zw.\a1~,»HaH+Zw.\b.,-\ﬂ, +Zw. +Zw.\ci,-H7H+Zw.

@, Z[(g 1)|k|91 +|ki|"1 24 <0, @, (n— r)Z[(S 1)\c”\91 +le;| "1+ &(n-r)<0

j=r+l j=r+l

Because the exponential convergence rate and specific nuclear function are not known in advance, so
we can only prove the conclusion's correctness in mathematics.

ij ij
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5. Conclusion

A new sufficient condition is derived to
guarantee the global exponential stability of the
equilibrium point for multi-delay and distributed
delay cellular neural network. To the best of our
knowledge, compared with traditional methods, our
approach is effective.
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